| Chapter 7 |              |    |
|-----------|--------------|----|
| Finite    | Volume Metho | bd |
|           |              |    |
|           |              |    |
|           |              |    |
|           |              |    |

| Finite Vol | z 🤡                             |   |
|------------|---------------------------------|---|
| Conserva   | tive laws of fluid motion       |   |
| Laws:      |                                 |   |
|            | 1- Conservation of mass         |   |
|            | 2- Newton's 2 <sup>nd</sup> law |   |
|            | 3- Conservation of energy       |   |
| View poi   | nts:                            |   |
|            | 1. Lagrangian                   |   |
|            | 2. Eulerian                     |   |
| 1          |                                 | 2 |

















| Conservation i | form of the governing equation of fluid flow                                                                                                                 |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mass:          | $\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{\nu}\right) = 0$                                                                            |  |
|                | $\frac{\partial(\rho u)}{\partial t} + \nabla . \left(\rho u \vec{v}\right) = -\frac{\partial p}{\partial x} + \nabla . (\mu \nabla u) + S_{M_x}$            |  |
|                | $\frac{\partial(\rho v)}{\partial t} + \nabla . \left(\rho v \vec{v}\right) = -\frac{\partial p}{\partial y} + \nabla . (\mu \nabla v) + S_{M_y}$            |  |
|                | $\frac{\partial(\rho w)}{\partial t} + \nabla . \left(\rho w \overrightarrow{v}\right) = -\frac{\partial p}{\partial z} + \nabla . (\mu \nabla w) + S_{M_z}$ |  |
| Energy Eq.     | $\frac{\partial(\rho e)}{\partial t} + \nabla \cdot \left(\rho e \vec{v}\right) = -p \nabla u + \nabla \cdot (k \nabla T) + \Phi + S_e$                      |  |
| Where          | p = p(q, T) $e = e(q, T)$                                                                                                                                    |  |



| Vietaki, Tut & Environment Reservices                                                      | 🔮 4                                                                                                                                                                                                              |    |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| The control volume integra<br>method that distinguishes<br>form:<br>$\int_{A} \rho \phi v$ | ation, which forms the key step of the finite volume<br>it from all other CFD techniques, yields the following<br>$\cdot \hat{n}  dA = \int_A \Gamma \nabla \phi \cdot \hat{n}  dA + \int_{\Psi} q_{\phi} d\Psi$ | _  |
| Integration of this equation:                                                              | $\int_{\Psi} \frac{\partial (\rho \phi)}{\partial t} d\Psi + \int_{\Psi} \nabla \cdot (\rho \phi u) d\Psi = \int_{\Psi} \nabla \cdot (\Gamma \nabla \phi) d\Psi + \int_{\Psi} S_{\phi} d\Psi$                    |    |
| Use Gusse Divergence                                                                       | $\frac{\partial}{\partial t} \left( \int_{Y} \rho \phi dY \right) + \int_{A} n \cdot (\rho \phi u) dA = \int_{A} n \cdot (\mathbf{I} \nabla \phi) dA + \int_{Y} S_{\phi} dY$                                     |    |
| For Steady state                                                                           | $\int_A n \cdot (\rho \phi u) dA = \int_A n \cdot (\Gamma \nabla \phi) dA + \int_{\forall} S_{\phi} d \forall$                                                                                                   |    |
|                                                                                            |                                                                                                                                                                                                                  | 14 |

















Linear approximations seem to be the obvious and simplest way of calculating interface values and the gradients. This practice is called central differencing. In a uniform grid linearly interpolated value for  $\Gamma$  is given by

$$\begin{split} \Gamma_{w} &= \frac{\Gamma_{H} + \Gamma_{P}}{2} & \left( \Gamma A \frac{d\phi}{dx} \right)_{e} = \Gamma_{e} A_{e} \left( \frac{\phi_{E} - \phi_{P}}{\delta x_{PE}} \right) \\ \Gamma_{e} &= \frac{\Gamma_{P} + \Gamma_{E}}{2} & \left( \Gamma A \frac{d\phi}{dx} \right)_{w} = \Gamma_{w} A_{w} \left( \frac{\phi_{P} - \phi_{W}}{\delta x_{WP}} \right) \end{split}$$

22

**EXAMPLE** 25











$$\begin{cases} \left(kA\frac{dT}{dx}\right)_{e} - \left(kA\frac{dT}{dx}\right)_{w}\right] + q'''\Delta v = 0 \\ \left[k_{e}A\frac{T_{E} - T_{P}}{\delta x} - k_{L}A\frac{T_{P} - T_{L}}{\left(\frac{\Delta t}{2}\right)}\right] + q'''A\delta x = 0 \end{cases}$$



| ubstitution  | of nume     | rical values for A | =1, <i>k</i> =0. | 5, <i>q</i> =1 | 000 an   | d <i>δx</i> = | 0.004 everywhere |
|--------------|-------------|--------------------|------------------|----------------|----------|---------------|------------------|
| ne coefficie | ents of the | e discretized equa | tions sur        | nmarız         | ed in 'l | able:         |                  |
|              | $a_P$       | S <sub>u</sub>     | S <sub>P</sub>   | $a_E$          | $a_W$    | گرہ           |                  |
|              | 375         | $4000 + 250T_L$    | -250             | 125            | 0        | 1             |                  |
|              | 250         | 4000               | 0                | 125            | 125      | 2             |                  |
|              | 250         | 4000               | 0                | 125            | 125      | 3             |                  |
|              | 250         | 4000               | 0                | 125            | 125      | 4             |                  |
|              | 375         | $4000 + 250T_R$    | -250             | 0              | 125      | 5             |                  |





8













| وزوشکند<br>لوزو. موخت و محماز رست<br>Research Institute<br>د. Just & turiouseer Rocardo Iostate |                 |                |                  |                |         |        |                      |
|-------------------------------------------------------------------------------------------------|-----------------|----------------|------------------|----------------|---------|--------|----------------------|
| VM for Steady                                                                                   | one o           | dime           | ensior           | ial co         | onve    | ctio   | on and diffusio      |
| (i) Case 1<br>$u = 0.1 \text{ m/s: } \text{F} = \rho u = 0$                                     | 0.1, <i>D</i> = | Г/бх =         | 0.1/0.2 =        | - 0.5 giv      | ves the | coeffi | cients as summarized |
| in Table                                                                                        | $a_P$           | S <sub>u</sub> | S <sub>P</sub>   | a <sub>E</sub> | $a_W$   | گرہ    |                      |
|                                                                                                 | 1.55            | 1.1¢/          | -1.1             | 0.45           | 0       | 1      |                      |
|                                                                                                 | 1               | 0              | 0                | 0.45           | 0.55    | 2      |                      |
|                                                                                                 | 1               | 0              | 0                | 0.45           | 0.55    | 3      |                      |
|                                                                                                 | 1               | 0              | 0                | 0.45           | 0.55    | 4      |                      |
|                                                                                                 | 1.55            | $0.9\phi_l$    | -0.9             | 0.0            | 0.55    | 5      |                      |
| The solution to the abo                                                                         | ve syster       | n is           | $\phi_1$         | 0.942          | 21]     |        |                      |
|                                                                                                 |                 |                | $\phi_2$         | 0.800          | )6      |        |                      |
|                                                                                                 |                 |                | φ <sub>3</sub> = | 0.627          | 76      |        |                      |
|                                                                                                 |                 |                | $\phi_4$         | 0.416          | 53      |        |                      |
|                                                                                                 |                 | l              | $\phi_5$         | 0.157          | 79      |        | :                    |



| = 2.5 m/s: $F = \rho u = 2.5$ , I<br>Table | $D = 1/\delta x$ | = 0.1/0.2    | = 0.5 | gives th |      |       |                  |
|--------------------------------------------|------------------|--------------|-------|----------|------|-------|------------------|
|                                            |                  | S            | S.    | ar       | aw.  | icien | ts as summarized |
|                                            | 2.75             | 3.5¢A        | -3.5  | -0.75    | 0    | 1     |                  |
|                                            | 1                | 0            | 0     | -0.75    | 1.75 | 2     |                  |
|                                            | 1                | 0            | 0     | -0.75    | 1.75 | 3     |                  |
|                                            | 1                | 0            | 0     | -0.75    | 1.75 | 4     |                  |
|                                            | 0.25             | $-1.5\phi_B$ | 1.5   | 0        | 1.75 | 5     |                  |
| he solution to the above                   | system is        | [ d          | 51    | 1.035    | 6    |       |                  |
|                                            |                  | ¢            | 52    | 0.869    | 94   |       |                  |
|                                            |                  | ¢            | 53 =  | 1.257    | 3    |       |                  |
|                                            |                  | d            | 54    | 0.352    | 21   |       |                  |
|                                            |                  | d            | 5     | 2.464    | 4    |       |                  |

















