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Chapter 7

Finite Volume Method 

2

Finite Volume Method

Conservative laws of fluid motion

Laws:

1- Conservation of mass 

2- Newton’s 2nd law

3- Conservation of energy

1. Lagrangian

2. Eulerian

View points:
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Finite Volume Method

Conservation of mass or continuity

Using divergence theorem
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Finite Volume Method

Conservation of momentum:

The stress tensor:
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Finite Volume Method

x- component:
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Finite Volume Method

Using divergence theorem
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Recall the material derivative:

Adding the continuity:

Finite Volume Method

and
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Finite Volume Method

therefore

similarly
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Finite Volume Method

For Newtonian fluid

therefore

finally
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Finite Volume Method

similarly

then
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Finite Volume Method

Energy Equation

One can derive

where
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Finite Volume Method
Conservation form of the governing equation of fluid flow

Mass:

Energy Eq.

Where

General form
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General form

Finite Volume Method

Energy Eq.

Equation

Continuity

momentum

14

Finite Volume Method

The control volume integration, which forms the key step of the finite volume

method that distinguishes it from all other CFD techniques, yields the following

form:

Integration of this equation: 

Use Gusse Divergence

For Steady state

15

Kinds of grid generation for Finite Volume Method

Finite Volume Method

B A

16

Approximations  of Finite Volume Method

Approximation of surface integration 

2D 3D
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Approximations  of Finite Volume Method

Midpoint rule

Trapezoid

Simpson’s rule

18

Approximations  of Finite Volume Method

approximation of volume integration 
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Approximations  of Finite Volume Method

Bi- quadratic
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FVM for one dimensional steady state diffusion

One dimensional steady- state diffusion problem: 

Using the divergence problem:

This is the key advantage of FVM



6

Computational Fluid Dynamics - Prof. V. Esfahanian

21

The application of the finite volume method to the solution of simple diffusion

problems involving conductive heat transfer is presented:

FVM for one dimensional steady state diffusion

the source term S may be a function of the dependent variable. In such cases the finite 

volume method approximates the source term by means of a linear form:

Step 1 : Grid generation

The first step in the finite volume method is to divide the domain into discrete control 

volumes.
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FVM for one dimensional steady state diffusion

Step 2: Discretization 

and

Linear approximations seem to be the obvious and simplest way of calculating 

interface values and the gradients. This practice is called central differencing. In a 

uniform grid linearly interpolated value for Γ is given by

23

FVM for one dimensional steady state diffusion

In practical situations, as illustrated later, the source term S may be a function of the 

dependent variable. In such cases the finite volume method approximates the source 

term by means of a linear form:

This can be rearranged as

Therefore 

24

FVM for one dimensional steady state diffusion

Which can be written as 

Where 

Step 3: Solution of equations 



7

Computational Fluid Dynamics - Prof. V. Esfahanian

25

FVM for one dimensional steady state diffusion

Example

Figure shows a cylinder of thickness L=2 cm with constant thermal conductivity k=0.5
W/m.K and uniform heat generation q=1000 kW/m3. The faces left and right are at

temperatures of 100°C and 200°C respectively.
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FVM for one dimensional steady state diffusion

Solution

The governing equation is:

Integration of the equation over a control volume

For 5 node
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FVM for one dimensional steady state diffusion

Thus 

The above equation can be rearranged as

This equation is written in the general form of 
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FVM for one dimensional steady state diffusion

Since we have the following coefficients:

Equation is valid for control volumes at nodal points 2, 3 and 4.

To incorporate the boundary conditions at nodes 1 and 5 we apply the linear

approximation for temperatures between a boundary point and the adjacent nodal point.

At node 1 the temperature at the west boundary is known. Integration of equation at the

control volume surrounding node 1 gives:
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FVM for one dimensional steady state diffusion

The last equation can be rearranged, using  , to yield the discretized 

equation for boundary node 1:

Where 

And for boundary node 5:

Where 
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FVM for one dimensional steady state diffusion

Substitution of numerical values for A=1, k=0.5, q=1000 and δx=0.004 everywhere gives 

the coefficients of the discretized equations summarized in Table:
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FVM for One dimensional steady state diffusion

Given directly in matrix form the equations are:

The solution to the above set of equations is:

32

FVM for one dimensional steady state diffusion

Comparison with the analytical solution
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FVM for Steady one dimensional convection and diffusion

In the absence of sources, steady convection and diffusion of a property φ in a given one-

dimensional flow field u is governed by

Integration of transport equation over the control volume gives

34

or

Two variables F and D to represent the convective mass flux per unit area and diffusion 

conductance at cell faces

Note 

FVM for Steady one dimensional convection and diffusion
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Identifying the coefficients of and as and , the central differencing

expressions for the discretized convection–diffusion equation are:

Where

FVM for Steady one dimensional convection and diffusion

36

A property φ is transported by means of convection and diffusion through the one-

dimensional domain sketched in Figure. the boundary conditions are

Using five equally spaced cells and the central differencing scheme for convection 

and diffusion, calculate the distribution of φ as a function of x for (i) Case 1: u = 0.1 

m/s, (ii) Case 2: u = 2.5 m/s, and compare the results with the analytical solution

Example

FVM for Steady one dimensional convection and diffusion
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Solution

The following data apply:

Integration of the equation over a control volume at nodal points 2, 3 and 4:

Where

FVM for Steady one dimensional convection and diffusion

38

We integrate governing equation and use central differencing for both the diffusion

terms and the convective flux through the east face of cell 1. The value of φ is given at

the west face of this cell so we do not need to make any

approximations in the convective flux term at this boundary.

This yields the following equation for node 1:

For control volume 5, the φ-value at the east face is zero. We obtain

Where 

FVM for Steady one dimensional convection and diffusion
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(i) Case 1
u = 0.1 m/s: F = ρu = 0.1, D = Γ/δx = 0.1/0.2 = 0.5 gives the coefficients as summarized 

in Table

The solution to the above system is

FVM for Steady one dimensional convection and diffusion
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Comparison with the analytical solution

the exact solution of the problem:

FVM for Steady one dimensional convection and diffusion
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The solution to the above system is

(ii) Case 2
u = 2.5 m/s: F = ρu = 2.5, D = Γ/δx = 0.1/0.2 = 0.5 gives the coefficients as summarized 

in Table

FVM for Steady one dimensional convection and diffusion
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the exact solution of the problem:

Comparison with the analytical solution

FVM for Steady one dimensional convection and diffusion
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Four Properties of  FVM

To ensure conservation of φ for the whole solution domain the flux of φ leaving a 

control volume across a certain face must be equal to the flux of φ entering the 

adjacent control volume through the same face.

1. Conservativeness

2.Positive Coefficient

44

3. Boundedness

The discretized equations at each nodal point represent a set of algebraic equations 

that needs to be solved. Normally iterative numerical techniques are used to solve 

large equation sets. These methods start the solution process from a guessed 

distribution of the variable φ and perform successive updates until a converged 

solution is obtained. Scarborough (1958) has shown that a sufficient condition for a 

convergent iterative method can be expressed in terms of the values of the 

coefficients of the discretized equations:

Here a′P is the net coefficient of the central node P , and the summation in the 

numerator is taken over all the neighboring nodes. If the differencing scheme produces 

coefficients that satisfy the above criterion the resulting matrix of coefficients is 

diagonally dominant

Four Properties of  FVM



12

Computational Fluid Dynamics - Prof. V. Esfahanian

45

4. Summation of neighbors' coefficients

0 If established continuity equation

If

Four Properties of  FVM
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Analytical  Solution of Convection and Diffusion
Steady one dimension convection and diffusion equation:

B.C

Analytical solution: 

thus

finally
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from B.C

Analytical  Solution of Convection and Diffusion
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Peclet Number: 

finally

For P and W:

Analytical  Solution of Convection and Diffusion

  Pe= cell Re number if
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Exact solution

3. In mid points

Note

For every Pe

2. If

Equation form is heat conduction

Analytical  Solution of Convection and Diffusion
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Analytical  Solution of Convection and Diffusion

Distribution of φ in the vicinity of two sources at different Peclet numbers:

(a) pure convection, Pe → 0;

(b) diffusion and convection


